Credit Guarantees and New Bank Relationships

William Mullins (UC San Diego)
Patricio Toro (Central Bank of Chile)

September 2017
Disclaimer

This paper reflects the views of the authors only

The paper does not reflect the view of Chile’s

- Ministry of Finance
- Superintendencia de Bancos
- FOGAPE
- or the view of the Central Bank of Chile
Focus of this paper: guarantees of bank loans

- **Credit guarantees** = Govt. pays $X\%$ of *loan principal* in case of default
 - Guarantee = Govt. insurance

• **Credit guarantees** = Govt. pays $X\%$ of *loan principal* in case of default
 - Guarantee = Govt. insurance
Focus of this paper: guarantees of bank loans

- **Credit guarantees** = Govt. pays X% of **loan principal** in case of default
 - Guarantee = Govt. insurance

- What is role of **Credit Guarantees**:
 - Do they work? i.e. do they increase access to loans?
 - Do they do anything else?
Focus of this paper: guarantees of bank loans

- **Credit guarantees** = Govt. pays X% of **loan principal** in case of default
 - Guarantee = Govt. insurance

- What is role of **Credit Guarantees**:
 - Do they work? i.e. do they increase access to loans?
 - Do they do anything else?

- In “normal times,” not in periods of crisis
Focus of this paper: guarantees of bank loans

- **Credit guarantees** = Govt. pays $X\%$ of **loan principal** in case of default
 - Guarantee = Govt. insurance

- What is role of **Credit Guarantees**:
 - Do they work? i.e. do they increase access to loans?
 - Do they do anything else?

- In “normal times,” not in periods of crisis

- For small (but not tiny) firms: sales \approx US $1m$
 - “SMEs” henceforth
Relevance: Guarantees widely used to improve SME credit access

- SMEs have strong political support, complain about collateral
Relevance: Guarantees widely used to improve SME credit access

- SMEs have **strong political support**, complain about collateral

- CGS at heart of **most Governments’** strategies to help Small Businesses
 - CGS viewed as most effective policy, esp. vs direct subsidies
 - Used as counter-cyclical policy tool throughout OECD
Relevance: Guarantees widely used to improve SME credit access

- SMEs have **strong political support**, complain about collateral

- CGS at heart of **most Governments’** strategies to help Small Businesses
 - CGS viewed as most effective policy, esp. vs direct subsidies
 - Used as counter-cyclical policy tool throughout OECD

- **Volume of covered lending** often vast:
 - Government CGS guaranteed loans (2014) =
 - 5.7% of GDP in Japan; 4.1% in Korea
 - US’s SBA 7(a) guarantees ~ US $27 billion of loans in FY 2017
Potential **benefits** of CGSs

A CGS increases the bank’s expected profit by:

- reducing risk to bank
- providing higher quality collateral with faster execution
Potential **benefits** of CGSs

A CGS increases the bank’s expected profit by:

- reducing risk to bank
- providing higher quality collateral with faster execution

CGSs may *reduce two sources of credit rationing* for some SMEs:

1. Allowing banks to lend to **firms without collateral**
2. Offsetting **fixed costs** of SME lending (loan officer time, IT) that are high relative to loan size
Potential costs... are large

China Faces Default Chain Reaction as Credit Guarantees Backfire

by Justina Lee
	@justinaknrope

October 8, 2015 — 12:00 PM EDT Updated on October 8, 2015 — 11:11 PM EDT

Failures of guaranteed loans surged 86 percent last year to about 400 billion yuan ($63 billion), according to UBS Group AG. At the nation’s Big Five lenders, such borrowings made up 18 percent of the total and 29 percent of non-performing financing, the Swiss bank said in a note. Standard & Poor’s said specialist guarantee firms are suffering, while the industry’s second-largest company halted operations amid accusations that it took on too much financial risk.
"SME loan guarantee programs are **globally ubiquitous** and countries have invested significantly in them...

Unfortunately, it is my sense that academic research on the **effectiveness of these programs has not matched their policy importance.**” Udell (2015)
“SME loan guarantee programs are **globally ubiquitous** and countries have invested significantly in them...

Unfortunately, it is my sense that academic research on the effectiveness of these programs has not matched their policy importance.” Udell (2015)

Robust result in literature: credit ↑, default rates ↑

- Causal? Mechanism?
“SME loan guarantee programs are **globally ubiquitous** and countries have invested significantly in them... Unfortunately, it is my sense that academic research on the effectiveness of these programs has not matched their policy importance.” Udell (2015)

Robust result in literature: credit ↑, default rates ↑

- Causal? Mechanism?

Empirical challenges: data availability and selection bias
Setting for this paper

- **Chile’s Govt. credit guarantee scheme for new loans, 2011-2012**
 - Similar design to many in OECD e.g. US SBA 7(a) program
Setting for this paper

- **Chile’s Govt. credit guarantee scheme for new loans, 2011-2012**
 - Similar design to many in OECD e.g. US SBA 7(a) program

- **Banks decide** if borrower gets a Govt. guarantee to go with loan
 - Limited supply of guarantees: most borrowers do not get one
Setting for this paper

- **Chile’s Govt. credit guarantee scheme for new loans, 2011-2012**
 - Similar design to many in OECD e.g. US SBA 7(a) program

- **Banks decide** if borrower gets a Govt. guarantee to go with loan
 - Limited supply of guarantees: most borrowers do not get one

- **Exploit eligibility rule**: “sales” cannot exceed US $1m
 - Regression discontinuity in narrow bandwidth (8,000 firms)
Main findings: effects of the Credit Guarantee Scheme (CGS)

- *Causes* ↑ in credit from bank providing private loan with Govt. guarantee - **Additionality**

- No RDD evidence of increased defaults for firms at threshold...But

- Power to detect default in RDD is limited

- Fixed effect evidence suggests a higher default propensity for smaller firms

- Scale up: 10% ↑ in credit ⇒ Sales, input purchases, and workers ↑ by 4.4%, 3.9%, and 4.8%
Main findings: effects of the Credit Guarantee Scheme (CGS)

- **Causes** ↑ in credit from bank providing private loan with Govt. guarantee - **Additionality**

- **No RDD evidence of increased defaults** for firms at threshold...But
 - Power to detect default in RDD is limited
 - Fixed effect evidence suggests a **higher default propensity for smaller firms**
Main findings: effects of the Credit Guarantee Scheme (CGS)

- **Causes** \(\uparrow \) in credit from bank providing private loan with Govt. guarantee - **Additionality**

- **No RDD evidence of increased defaults** for firms at threshold...But
 - Power to detect default in RDD is limited
 - Fixed effect evidence suggests a **higher default propensity for smaller firms**

- **Scale up**: 10% \(\uparrow \) in credit \(\Rightarrow \) Sales, input purchases, and workers \(\uparrow \) by 4.4%, 3.9%, and 4.8%
Novel findings

- CGS used to build new bank relationships
Novel findings

- CGS used to build **new bank relationships**

- **Amplification effect** in year following guarantee:
 - additional new bank relationships
 - more debt from bank(s) not providing guarantee
Establishing effects of CGS: key Empirical Challenge

Selection into scheme by firms or banks

- **Selection bias** such that firms receiving guarantee are systematically different from available “control” or comparison firms
Establishing effects of CGS: key Empirical Challenge

Selection into scheme by firms or banks

- \(\Rightarrow\) **Selection bias** such that firms receiving guarantee are systematically different from available “control” or comparison firms

- **Our solution:** \(\Rightarrow\) *Compare all eligible firms to all ineligible firms in a RDD*
Empirical strategy: exploit eligibility cutoff

- Eligibility threshold based on 12 month moving sum of "sales"
- Strategy: (Fuzzy) RDD comparing eligible vs ineligible firms
 - Intuition: locally random assignment of firms around cutoff
Why use a Fuzzy RDD?

Many eligible firms do not receive guarantee, because:

- Guarantee amounts are limited
- Firm may have no demand for additional credit ("never takers")
Specification

Reduced Form RD: effect of eligibility

\[\text{Outcome}_{it} = c + \rho \text{Eligible}_{it} + \gamma_1 \text{Sales}_{it} + \delta_t + \epsilon_{it} \]

Fuzzy RD: effect of receiving a guaranteed loan on “compliers”

\[\text{Treatment}_{it} = c + \gamma_0 \text{Eligible}_{it} + \gamma_1 \text{Sales}_{it} + \delta_t + u_{it} \]
\[\text{Outcome}_{it} = c + \beta \text{Treatment}_{it} + \phi_1 \text{Sales}_{it} + \eta_t + \nu_{it} \]

Key assumption: firms have only imprecise control of the assignment variable (sales)
Are firms manipulating assignment variable?

Tests indicate **no manipulation** of assignment variable:

- No change in estimates when include covariates
- No difference in firm characteristics on either side of cutoff

Unsurprising – costly for firms to manipulate eligibility:
- Banks decide which firms receive guarantee
- Firms could delay sales, but Sales formula is highly opaque: web query informs banks if clients eligible Yes/No
- Firms could delay reporting of sales, but need clients to cooperate (VAT fraud) + no evidence
Are firms manipulating assignment variable?

Tests indicate no manipulation of assignment variable:

- No change in estimates when include covariates
- No difference in firm characteristics on either side of cutoff

- Unsurprising - costly for firms to manipulate eligibility:
 - Banks decide which firms receive guarantee
 - Firms could delay sales, but Sales formula is highly opaque: web query informs banks if clients eligible Yes/No
 - Firms could delay reporting of sales, but need clients to cooperate (VAT fraud) + no evidence
Data

For all firms in Chile:

- credit registry
- employment
- IRS data (sales, purchases)
Debt: doubling relative to 6m average

Panel A: Debt growth in focal period (Reduced form)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>No assignment</th>
<th>Controls</th>
<th>Triangle kernel</th>
<th>Poly.(4th°)</th>
<th>CCT(2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1500UF</td>
<td>1250UF</td>
<td>1750UF</td>
<td>500UF</td>
<td>1500UF</td>
<td>1500UF</td>
</tr>
<tr>
<td>Coefficient</td>
<td>0.026**</td>
<td>0.028**</td>
<td>0.025**</td>
<td>0.027***</td>
<td>0.033***</td>
<td>0.029**</td>
</tr>
<tr>
<td>s.e.</td>
<td>[0.012]</td>
<td>[0.013]</td>
<td>[0.011]</td>
<td>[0.010]</td>
<td>[0.011]</td>
<td>[0.013]</td>
</tr>
<tr>
<td># obs.</td>
<td>30,937</td>
<td>25,857</td>
<td>36,066</td>
<td>10,379</td>
<td>29,843</td>
<td>30,937</td>
</tr>
</tbody>
</table>

Panel B: Debt growth in focal period (Fuzzy RDD)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>No assignment</th>
<th>Controls</th>
<th>Triangle kernel</th>
<th>Poly.(4th°)</th>
<th>CCT(2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1500UF</td>
<td>1250UF</td>
<td>1750UF</td>
<td>500UF</td>
<td>1500UF</td>
<td>1500UF</td>
</tr>
<tr>
<td>Coefficient</td>
<td>0.947**</td>
<td>1.034**</td>
<td>0.928**</td>
<td>0.987***</td>
<td>1.213***</td>
<td>1.057**</td>
</tr>
<tr>
<td>s.e.</td>
<td>[0.431]</td>
<td>[0.489]</td>
<td>[0.420]</td>
<td>[0.366]</td>
<td>[0.422]</td>
<td>[0.475]</td>
</tr>
<tr>
<td># obs.</td>
<td>30,937</td>
<td>25,857</td>
<td>36,066</td>
<td>10,379</td>
<td>29,843</td>
<td>30,937</td>
</tr>
</tbody>
</table>
dots are averages for bins of 50 UF; lines estimated from granular data
P(loan delinquency) - suggestive evidence

- Smaller firms default more with guarantees in fixed effect estimator
- No RDD evidence of increased default at threshold, but:

![Default Indicator Graph]

- Treated firms (avg)
- Untreated firms (avg)

Months relative to treatment month (0)
Real effects

- Large elasticities strengthen evidence for credit constraints
- Similar magnitudes (although from different data sets) suggests general **scaling up of firm**

Elasticity of real variables with respect to bank debt at 12 months

<table>
<thead>
<tr>
<th></th>
<th>Employment</th>
<th>Permanent workers</th>
<th>Temporary workers</th>
<th>Cumulative sales</th>
<th>Cumulative input purchases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient</td>
<td>0.48**</td>
<td>0.45*</td>
<td>0.06</td>
<td>0.50*</td>
<td>0.56*</td>
</tr>
<tr>
<td>s.e.</td>
<td>[0.24]</td>
<td>[0.24]</td>
<td>[0.80]</td>
<td>[0.28]</td>
<td>[0.29]</td>
</tr>
<tr>
<td># obs.</td>
<td>14,059</td>
<td>13,691</td>
<td>9,110</td>
<td>23,596</td>
<td>23,624</td>
</tr>
</tbody>
</table>
Recap

- Additionality: credit increase is causal
- Default: some evidence of increased default; not large
- Real effects: firms use credit to scale up

Novel results: New bank relationships
- F used for new clients to mitigate uncertainty about firm type
- Amplification effect in year following F:
 - new bank relationships
 - more debt from other banks (causal)
- Mechanism: information externality or net worth increase
Recap

- Additionality: credit increase is causal
- Default: some evidence of increased default; not large
- Real effects: firms use credit to scale up

Novel results: New bank relationships

- F used for new clients to mitigate uncertainty about firm type
Recap

- Additionality: credit increase is causal
- Default: some evidence of increased default; not large
- Real effects: firms use credit to scale up

Novel results: **New** bank relationships

- F used for new clients to mitigate uncertainty about **firm type**

- Amplification effect in year following F:
 - new bank relationships
 - more debt from other banks (causal)
 - Mechanism: information externality or net worth increase
Guarantees: 44% given to firms in first 2yrs of relationship, (24% to firms with <2yrs in banking system)
New bank relationships | only 1 bank 4m before
Amplification effect: Dynamics of ∆ Debt

Panel A: total debt growth dynamics (Reduced form)

<table>
<thead>
<tr>
<th>lags and leads from focal period (months)</th>
<th>-6</th>
<th>-4</th>
<th>-1</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient</td>
<td>-0.013</td>
<td>0.003</td>
<td>0.016*</td>
<td>0.026**</td>
<td>0.039***</td>
<td>0.042**</td>
<td>0.036**</td>
<td>0.051**</td>
<td>0.051**</td>
<td>0.048*</td>
</tr>
<tr>
<td>s.e.</td>
<td>[0.011]</td>
<td>[0.009]</td>
<td>[0.010]</td>
<td>[0.012]</td>
<td>[0.014]</td>
<td>[0.017]</td>
<td>[0.018]</td>
<td>[0.021]</td>
<td>[0.024]</td>
<td>[0.027]</td>
</tr>
<tr>
<td># obs.</td>
<td>30,154</td>
<td>30,409</td>
<td>30,808</td>
<td>30,937</td>
<td>30,509</td>
<td>30,256</td>
<td>30,056</td>
<td>27,267</td>
<td>23,204</td>
<td>19,304</td>
</tr>
</tbody>
</table>

Panel B: total debt growth dynamics (Fuzzy RDD)

<table>
<thead>
<tr>
<th>lags and leads from focal period (months)</th>
<th>-6</th>
<th>-4</th>
<th>-1</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient</td>
<td>-0.490</td>
<td>0.113</td>
<td>0.605</td>
<td>0.947**</td>
<td>1.379**</td>
<td>1.514**</td>
<td>1.302*</td>
<td>1.837**</td>
<td>1.713**</td>
<td>1.611*</td>
</tr>
<tr>
<td>s.e.</td>
<td>[0.418]</td>
<td>[0.333]</td>
<td>[0.369]</td>
<td>[0.431]</td>
<td>[0.539]</td>
<td>[0.612]</td>
<td>[0.666]</td>
<td>[0.786]</td>
<td>[0.837]</td>
<td>[0.917]</td>
</tr>
<tr>
<td># obs.</td>
<td>30,154</td>
<td>30,409</td>
<td>30,808</td>
<td>30,937</td>
<td>30,509</td>
<td>30,256</td>
<td>30,056</td>
<td>27,267</td>
<td>23,204</td>
<td>19,304</td>
</tr>
</tbody>
</table>

- Amplification effect: Growth after F treatment month is due to ↑ at Non-F bank
Conclusion

Clear causal evidence regarding major policy intervention: CGS

- Additionality: credit increase is causal
- Default: some evidence of increased default; not large
- Real effects: firms use credit to scale up
Conclusion

Clear causal evidence regarding major policy intervention: CGS

- Additionality: credit increase is causal
- Default: some evidence of increased default; not large
- Real effects: firms use credit to scale up

Suggests credit constraints for SMEs in steady state

- Results here are a lower bound - they are for “good times”
Conclusion

Clear causal evidence regarding major policy intervention: CGS

- Additionality: credit increase is causal
- Default: some evidence of increased default; not large
- Real effects: firms use credit to scale up

Suggests credit constraints for SMEs in steady state

- Results here are a lower bound - they are for “good times”

Novel results: F causes establishment of New bank relationships

- F causes used to mitigate uncertainty about firm type
- Amplification effect in year following F:
 - new bank relationships
 - more debt from other banks (causal)
 - Mechanism: information externality or net worth increase
How Chile’s FOGAPE works

- **Bank assigns guarantee** to borrower
- Guarantee for individual loans, maximum coverage = 80%
- Interest surcharge of 1-2% paid to FOGAPE

- Otherwise, **loan interest rates the same as for normal loans**
- Historical default rate ~4-7% (similar to SME default rate of 6-7%)
- **Eligibility rule:** “sales” < 25,000 UF = US $1m
Where is cutoff in size distribution of firms?